DSS Case 2020-4

Disclosures

We have no relevant financial disclosures.

27-year-old female

Initially presented in childhood with visual problems

- Initially presented in childhood with visual problems
- Diagnosed with retinitis pigmentosa (RP)
 - Progressed to clinical blindness

- Initially presented in childhood with visual problems
- Diagnosed with retinitis pigmentosa (RP)
 - Progressed to clinical blindness
- CNS symptoms in her 20s
 - Word finding difficulties
 - Memory loss
 - Generalized tonic-clonic seizures

- Initially presented in childhood with visual problems
- Diagnosed with retinitis pigmentosa (RP)
 - Progressed to clinical blindness
- CNS symptoms in her 20s
 - Word finding difficulties
 - Memory loss
 - Generalized tonic-clonic seizures
- Brain MRI showed generalized cortical atrophy of unknown etiology

- Initially presented in childhood with visual problems
- Diagnosed with retinitis pigmentosa (RP)
 - Progressed to clinical blindness
- CNS symptoms in her 20s
 - Word finding difficulties
 - Memory loss
 - Generalized tonic-clonic seizures
- Brain MRI showed generalized cortical atrophy of unknown etiology
- Cousin diagnosed with RP- no other pertinent PMH/family history

- Brain weight 950 g (expected ~1200 g for adult female)
- Generalized cortical atrophy

Mildly thin cortical ribbon

- Mildly thin cortical ribbon
- Highly atrophic bilateral lateral geniculate nuclei

Hippocampus

Discussion

Hippocampus

Neurons filled with granular storage material/intracellular lipopigment

Cingulate gyrus

Neurons filled with granular storage material and neuropil vacuolization

Cingulate gyrus

- Neurons filled with PAS and LFB positive granular storage material
- Neuropil vacuolization

Cingulate gyrus

Reactive gliosis

Hippocampus

Neurons filled with PAS and LFB positive granular storage material

Midbrain

- Neurons filled with larger aggregates of eosinophilic inclusion material
- Pallor in substantia nigra neurons

Substantia Nigra

Neurons filled with larger aggregates of eosinophilic inclusion material

Retina

Retina

Severe degeneration of retinal layers → glial scar

Retina

- Severe degeneration of retinal layers → glial scar
- Pigment-laden macrophages/pigment epithelium

Brain

Brain

Neuronal cytoplasmic inclusions

Brain

Neuronal cytoplasmic inclusions including fingerprint bodies

Brain

Neuronal cytoplasmic inclusions including fingerprint bodies

Brain

Neuronal cytoplasmic inclusions including fingerprint bodies

Genetic testing and Neuropathological Diagnosis

Genetic testing: homozygous deletion in CLN3

Genetic testing and Neuropathological Diagnosis

• Genetic testing: homozygous deletion in CLN3

 Juvenile neuronal ceroid lipofuscinosis/CLN3 disease (Batten Disease)

Class of genetic lysosomal storage disorders

- Class of genetic lysosomal storage disorders
- Mutations in at least 14 genes

- Class of genetic lysosomal storage disorders
- Mutations in at least 14 genes
- Variable age of onset, symptoms, pathological findings

- Class of genetic lysosomal storage disorders
- Mutations in at least 14 genes
- Variable age of onset, symptoms, pathological findings
- Principle features: visual impairment, cognitive/motor decline, seizures, premature death

- Class of genetic lysosomal storage disorders
- Mutations in at least 14 genes
- Variable age of onset, symptoms, pathological findings
- Principle features: visual impairment, cognitive/motor decline, seizures, premature death
- Neuronal loss, reactive gliosis, and lysosomal accumulation of autofluorescent storage material (ASM) or lipopigment

- Autosomal recessive mutation in ceroid-lipofuscinosis, neuronal 3 gene (CLN3)
 - Encodes BATTENIN: ubiquitously expressed, transmembrane protein, unknown function
 - 85% have homozygous 1kb deletion → truncated, nonfunctional protein

- Autosomal recessive mutation in ceroid-lipofuscinosis, neuronal 3 gene (CLN3)
 - Encodes BATTENIN: ubiquitously expressed, transmembrane protein, unknown function
 - 85% have homozygous 1kb deletion → truncated, nonfunctional protein
- Vision loss followed by cognitive/motor decline, speech problems, seizures, death in 2nd/3rd decade

- Autosomal recessive mutation in ceroid-lipofuscinosis, neuronal 3 gene (CLN3)
 - Encodes BATTENIN: ubiquitously expressed, transmembrane protein, unknown function
 - 85% have homozygous 1kb deletion → truncated, nonfunctional protein
- Vision loss followed by cognitive/motor decline, speech problems, seizures, death in 2nd/3rd decade
- Autopsy
 - Significant neuronal loss
 - Gray matter can appear light brown/yellow/tan due to excessive lipopigment and gliosis?
 - Pallor in substantia nigra
 - Retinal atrophy, optic nerve degeneration, lateral geniculate nuclei degeneration

- Intracellular lipopigment/ASMs
 - Luxol fast blue
 - PAS
 - Sudan black
 - Acid phosphatase
 - Autofluorescence

- Intracellular lipopigment/ASMs
 - Luxol fast blue
 - PAS
 - Sudan black
 - Acid phosphatase
 - Autofluorescence

- Characteristic ultrastructural finding:
 - Fingerprint bodies

Summary

JNCL/CLN3 disease

- Genetic testing: homozygous deletion in CLN3 (most common)
- Generalized cortical atrophy
- ASM/lipopigment in neurons throughout the brain
- Retinal degeneration
- Fingerprint body inclusions on EM

References

- 1. Haltia, M. The neuronal ceroid-lipofuscinoses. J Neuropathol Exp Neurol. 2003 Jan;62(1):1-13.
- 2. Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol. 2019 Mar;15(3):161-78.
- 3. Radke J, Stenzel W, Goebel HH. Human NCL Neuropathology. Biochim Biophys Acta. 2015 Oct;1852(10 Pt B):2262-6
- 4. Wright GA, Georgiou M, Robson AG, et al. Juvenile Batten Disease (CLN3): Detailed Ocular Phenotype, Novel Observations, Delayed Diagnosis, Masquerades, and Prospects for Therapy. Ophthalmol Retina. 2019 Nov 13.

