# 2015 AANP: Diagnostic Slide Session

## Case 6

### Armine Darbinyan, MD Neuropathology Fellow The Joseph Schein, M.D. Endowed Fellow

Susan Morgello, MD Jessica Robinson-Papp, MD Michelle Jacobs, PhD Catherine Cho, PhD



## Disclosures

# No relevant financial relationships or conflicts of interest



# **Clinical History**

- A 35-year-old African-American man
- 5 years of slowly progressive gait disturbance and dysarthria
- HIV, poor adherence to antiretroviral medications (CD4+ nadir of 16)
- In his 20s a boxer, had sustained a total of 3 knockouts
- No family history of neurologic disease

#### Neurologic examination at presentation

- Normal mental status
- Gait wide-based, unsteady
- Dysarthria, decreased facial expression, slow saccades, mild impairment of upward gaze
- Mild symmetric lower extremity weakness (distal and proximal), spasticity
- Mildly reduced vibratory sense in the toes
- **Progressive neurologic course**: nystagmus, dysmetric saccades, ataxia, spasticity involving UE, worsening dysarthria and hypophonia, peripheral neuropathy
- MRI of the brain: a mild, diffuse cerebral and cerebellar atrophy, more marked brainstem atrophy.

A diagnostic molecular test was performed

At the time of death (50yo) - bed bound, tracheostomy, communicates via blinking his eyes.

#### Brain 1150 g



010072

海南望出版

сеицинициницини

3.当在思想或是可以说之中就<sup>3</sup>

Писнез

1 cm



#### Cerebellum and pons



## Spinal cord



1. What was the diagnostic molecular test?

## 2. What is the diagnosis?

3. Is the neuropathology typical of this disorder?



## Diagnostic molecular test

Testing for the CAG repeat expansion (Ataxia profile) was performed at **Athena Diagnostics**, **Inc**.

- SCA1 allele 1: 30 CAG repeats (N: < =34)• SCA1 allele 2: 30 CAG repeats • SCA2 allele 1: 23 CAG repeats (N: < =31)• SCA2 allele 2: 23 CAG repeats MJD (SCA3) allele 1: 72 CAG repeats (N: < =40, B: 41-60) MJD (SCA3) allele 2: 38 CAG repeats • SCA6 allele 1: 13 CAG repeats (N: < =18)• SCA6 allele 2: 11 CAG repeats SCA7 allele 1: 10 CAG repeats (N: < =18)
- SCA7 allele 2: 10 CAG repeats

# Neuropathology Findings

## Midbrain with s. nigra



1 cm









#### Clarke's column

Spinal cord, upper thoracic, Bielschowsky



Ataxin 3 (Dr. Rudnicki, Johns Hopkins U)

100 um

6

0

O



# Spinocerebellar ataxia type 3 (SCA3)/ Machado-Joseph disease (MJD) with

numerous polyglucosan bodies in HIV+ African-American male with history of head trauma

#### Hereditary ataxias

#### updated list - http://neuromuscular.wustl.edu/ataxia/recatax.html

| AD                                                                                                                                                                                                                                                                                                                                                                                          | AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | X-link                                                                                                                                                                                                                                                                                                                                                                    | Mit                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>SCA 1-41         Repeat expansion, &gt; CAG,<br/>mutations         Cerebellar cortical<br/>atrophy,         OPCA         Spinocerebellar<br/>degeneration         Spinocerebellar<br/>degeneration         CAG expansion in atrophin-<br/>1 (12p) - 49-75 (n – 7-<br/>23)         Chorea, myoclonic epi,<br/>dementia (simul of HD)         Neuronal loss: DN. GP.     </li> </ol> | <ol> <li>Friedreich ataxia</li> <li>9q <i>FRDA</i> – frataxin:</li> <li>95% - GAA 500-1000 (n- 6-34)</li> <li>Degeneration:         <ul> <li>Spinal cord - post columns, distal spino-cerebellar and pyramidal tracts, Clarke's</li> <li>DRG, large myelin axons from post roots</li> <li>Medulla: accessory cuneate and gracile n., sup. olives</li> <li>2* ischemic changes (cardiomyopathy)</li> </ul> </li> <li>Ataxia w vit E def         <ul> <li>accessive ataxia s-me</li> </ul> </li> </ol> | <ol> <li>FXTAS         CGG expansion             in 5' UTR of             FMR1 - 55-             200 –             premutation      </li> <li>Cortical             atrophy         <ul> <li>Loss of             Purkinje             cells,             Axon and             myelin loss in wm             Intranucl             inclusions (N, A)</li> </ul> </li> </ol> | <ul> <li><b>1. MERFF</b><br/>tRNA (lys,<br/>leu)</li> <li><b>2. MELAS</b><br/>tRNA leu</li> <li><b>3. NARP</b><br/>ATPase 6<br/>gene</li> </ul> |
| <ul> <li>Neuronanioss. DN, Gr, subthalamic, caudate, putamen, SN, inf olives</li> <li>Atrophy of sup CP</li> <li>Degeneration of post spinal columns and spinocerebellar tracts</li> <li>3. Episodic ataxias EA1-8</li> <li>4. Dominant ataxia s-mes</li> </ul>                                                                                                                             | <ul> <li>Mut POLG – DNA-polymerase-γ: depletion of mt DNA in PN and skeletal muscle:</li> <li>a. SCAE – cerebellar and sensory</li> <li>b. SANDO – sensory ataxia w. periph neuropathy, dysarthria and ophthalmoplegia</li> <li>4. DNA repair s-mes (AT, XP, Cockayne ERCC, MRE11A)</li> <li>5. SCAR 1-20</li> </ul>                                                                                                                                                                                 | 2. SCAX 1-5<br>3. Congenital<br>and<br>recessive<br>diseases<br>with<br>cerebellar<br>aplasia                                                                                                                                                                                                                                                                             |                                                                                                                                                 |

# Spinocerebellar ataxia type 3 (SCA3)/Machado-Joseph disease (MJD)

- The most frequent subtype of AD SCA. Originated from founders in the Iberia Peninsula, who migrated to the Azores
- CAG repeat expansion > 55 units in the ATXN3 gene, 14q32.1 region
- Intranuclear aggregates of ataxin-3, proteasome subunits and transcription factors (TBP and CBP)
- The clinical variability: length of repeats and the age at onset
- Anticipation of the phenotype: most frequently a/w paternal transmission
- Neuronal loss in midbrain, pons, medulla oblongata, cerebellum, Clarke'scolumns, +/-BG, thalamus, cerebral cortex



Seidel et al. Acta Neuropathol. 2012 Jul;124(1):1-21.

#### Why are so many corpora amylacea? Has this been described before?



- Adult polyglucosan body disease: AR or sporadic a/w the diffuse accumulation of abnormally branched glycogen in polyglucosan bodies.
- 5<sup>th</sup> 7<sup>th</sup> decades: neurogenic bladder and motor neuron dysfunction, +/- dementia, peripheral neuropathy and cerebellar dysfunction
- Familial APBD due to mutations in the Glycogen branching enzyme gene (GBE1, 3p12.2)
- Mutations in *GBE1 are also* causative of Glycogen Storage Disease type IV (GSDIV) - usually infantile liver disease or skeletal/cardiac myopathy

Nucleotide variations in case #6: T507A, Y114Y, two additional nucleotide variations in introns

#### **Case reports:**

- Felice KJ et al. Childhood-onset spinocerebellar syndrome associated with massive polyglucosan body deposition. Acta Neurol Scand. 1997 Jan;95(1):60-4.
- Urkasemsin G et al. Mapping of Purkinje neuron loss and polyglucosan body accumulation in hereditary cerebellar degeneration in Scottish terriers. Vet Pathol. 2012 Sep;49(5):852-9



## Thank You !

Susan Morgello, MD

Mary Fowkes, MD, PhD

Nadia Tsankova, MD, PhD John Crary MD, PhD Dushyant Purohit, MD

Sergey Zhadanov, MD, PhD



# References

- 1. Durr A et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular and neuropathological features. Ann Neurol. 1996;39:490–499.
- 2. Felice KJ et al. Childhood-onset spinocerebellar syndrome associated with massive polyglucosan body deposition. Acta Neurol Scand. 1997 Jan;95(1):60-4.
- 3. Loesch D, Hagerman R. Unstable mutations in the FMR1 gene and the phenotypes. Adv Exp Med Biol. 2012; 769:78-114.
- 4. Paulson H. Machado-Joseph disease/spinocerebellar ataxia type 3. Handb Clin Neurol. 2012;103:437-49.
- 5. Seidel et al. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012 Jul;124(1):1-21.
- 6. Takiyama Y et al. Evidence for intergenerational istability in the CAG repeat in the MJD1 gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum Mol Genet. 1995;4:1137–1146.
- Urkasemsin et al. Mapping of Purkinje neuron loss and polyglucosan body accumulation in hereditary cerebellar degeneration in Scottish terriers. Vet Pathol. 2012 Sep;49(5):852-9

# Q1. Why does an African-American has a disease typically associated with the Portuguese ancestry?

# Two main ancestral haplotypes in MJD:

- The Machado lineage, predominant in families of **Portuguese** extraction
- The Joseph lineage, which is much older and worldwide spread, postulated to have an Asian origin.



Patient's (ID – 47) ancestry markers: ~76% African American, ~24% European American