<u>59th AANP DIAGNOSTIC SLIDE SESSION 2017</u> <u>CASE 2017-06</u>

American Association of Neuropathologists Annual Meeting - June 10th 2017

Namita Sinha, MD Neuropathology Fellow, Department of Laboratory Medicine & Immunology Washington University School of Medicine Angelica Oviedo, MD

> Pediatric Neuropathologist IWK Pediatric Hospital, Dalhousie University

No financial disclosures

Clinical history

- A 35-year-old G3P2 at 20w5d of gestation
- A genetic sonogram multiple congenital anomalies including macrocephaly, parallel lateral ventricles, choroid plexus cysts, nuchal thickening, frontal bossing, midfacial hypoplasia, hypertelorism, bell-shaped chest, multiple echogenic intracardiac foci and bilateral clubfeet
- Termination at 22w5d of gestation
- Autopsy performed

Weights and Measurements

AANP 2017-6

- Body weight: 526 g
- Length: 32.0 cm
- Foot length:
 - Right: 2.9 cm
 - Left: 3.4 cm

Expected (22 weeks gestation)

- 461 g +/- 122 g
- 28.0 cm +/- 2.0 cm
- 3.9 cm +/- 0.3 cm

Malformations

- Dolichocephaly, low nasal bridge, long face, anteverted nostrils
- Cutaneous vascular malformations right thorax and both legs (Black arrows)

Malformations:

Clubbed feet

Left foot with 2-3-4 syndactyly

Post-mortem X-rays:

Absent/Poorly formed mid-phalanx 5th fingers

Enlarged Skull, frontal bossing, 11 ribs Lumbar vertebral bodies with clefting

Capillary malformations: Lung Heart

Right Kidney with Hydronephrosis

Left Adrenal Gland with Neuroblastoma In Situ

Autopsy: Brain Brain weight: 154 g (Expected: 65.4 g @22 wk)

Polymicrogyria **Cobblestoned** Cortical Surface

Nodular Ventricular Surface

Massively Enlarged Germinal Matrix Periventricular Capillary Malformation

Differential diagnosis?

Genetic testing

CLINICALLY RELEVANT INTERPRETATIONS

Interpretations of variants that are deemed clinically significant are listed here.

.....

Variants Detected	Interpretation
АКТ1 p.E17К	A pathogenic, nonsynonymous <i>AKT1</i> p.E17K mutation was identified at near heterozygous frequency in the sequenced tissue. <i>AKT1</i> encodes a serine-threonine protein kinase which, when activated, helps to regulate critical signaling pathways involved in proliferation, differentiation and cell survival. This single nucleotide variant results in the replacement of a glutamic acid with a lysine residue at codon 17. This variant occurs in a highly conserved amino acid residue located within the N-terminal pleckstrin homology (PH) domain of the protein and interacts with the kinase domain to maintain AKT in an inactive state. This variant has been shown to be centrally involved in the molecular etiology of Proteus syndrome in which somatic, activating alterations in <i>AKT1</i> p.E17K have been described (Lindhurst MJ, <i>et al.</i> ; N Engl J Med; 2011 Aug 18;365(7):611-9). Lindhurst et al. (2011) found

Indica	ation:	Overgrowth disorder, prenatal onset, foot, syndactyly toes 3/4/5 on left	iacial dysm, 3 toes right Date Ordered:		
Speci Quali	imen ty:	Adequate	Date Accessioned:		
		REVIEW	V STATUS: Final		
TEST	PERFORM	ED			
<i>*</i>	Somatic Overgrowth Gene Set - Targeted next-generation sequencing was performed on this FFPE sample biopsied from the left temporal lobe in this patient with multiple malformation syndrome with early overgrowth. See Test Details for more information.				
CLINIC Variants	CALLY RE	LEVANT RESULTS SUMMARY ned clinically significant are listed here.			
Variar	nts Detect	ed Pathogenic	Likely Pathogenic		
AKT1	к	4			

Discussion: Genetic pathway PI₃K-**AKT**-mTOR Signaling Pathway

CLOVES indicates congenital, lipomatous overgrowth, vascular malformations, epidermal nevi, and scoliosis/skeletal/spinal anomalies.

JAMA Dermatol. 2014;150(9):990-993. doi:10.1001/jamadermatol.2013.10368

Diagnosis

Proteus Syndrome due to AKT1 pE17K mutation.

- Facial anomaly
 - Dolichoencephaly
 - frontal bossing,
 - midfacial hypoplasia,
 - Hypertelorism
 - low nasal bridge,
 - anteverted nostrils
- Systemic vascular malformations

- Brain anomaly
 - Megalencephaly
 - Cobblestone cortex
 - Periventricular nodular heterotopia
 - Massively enlarged germinal matrix
 - Multiple capillary malformations
 - Focal polymicrogyria
 - Choroid plexus cyst

Discussion: Proteus syndrome (PS)

- Proteus syndrome is a complex condition characterized by asymmetric overgrowth of tissue types derived from all three germ layers (bones, skin, neural and other tissues)
- Incidence: < 1 in 1 million people worldwide
- Named by Wiedemann; derived from the Greek god, Proteus (ability to constantly change his shape)

Discussion:

Clinical presentation of PS

• Highly variable

 Joseph Merrick, "The Elephant Man" -most well-known case of Proteus syndrome

References

- Biesecker L. G., Happle R., Mulliken J. B., et al.: Proteus syndrome: diagnostic criteria, differential diagnosis, and patient evaluation. Am J Med Genet 1999; 84(5): 389–395.
- Biesecker L. The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet 2006; 14(11): 1151–1157.
- Ogrodnik M, S Krzysztof, J Sergiusz. Neurological manifestations of Proteus syndrome – review of the literature. Vol. 24/2015, nr 49
- Dietrich R. B., Glidden D. E., Roth G. M., et al.: The Proteus syndrome: CNS manifestations. Am J Neuroradiol 1998; 19(5): 987–990.