

2017 AANP Diagnostic Slide Session – Case #10

Andrew Guajardo, M.D.
The Johns Hopkins Hospital

Disclosures

No relevant financial disclosures.

Clinical History

- 14 yo M with a h/o MDS s/p bone marrow transplant
- Significant family history for carcinoma and lymphoma
- Developmental delay
- Immunocompromised w/ recurrent infections
- GVHD

Radiology

T2 Coronal MRI

Gross & Microscopic

Differential Diagnosis & Discussion

Additional Autopsy Findings

- Full autopsy performed
 - Reticulated hyperpigmentation of the skin, absent nail beds, alopecia, testicular atrophy
 - Organizing and interstitial fibrosis, lung
 - L ventricular papillary muscle infarct
 - Mineralization, neocortex, basal ganglia, thalami, and leptomeningeal vessels
- Genetic Testing
 - Significantly shortened telomere lengths in blood

?

Dyskeratosis Congenita Hoyeraal-Hreidarsson Variant

Dyskeratosis Congenita - Telomeres 🛦 DHN

- Normally increased telomere activity is observed in tissues with rapid turnover (eg. mucosa, nails, skin, hematopoietic stem cells)
- All known causative mutations affect function of telomerase activity/assembly, or in telomere integrity
- Maintenance of telomeres generally a neoplastic feature
 - Shortened telomeres may result in p53 involved cell arrest
 - Rarely, additional mutations result in chromosome instability
 - Cycles of chromosomal fusion/breakage -> tumorigenesis

Cancer Genet. Author manuscript; available in PMC 2012 December 1

Published in final edited form as:

Cancer Genet. 2011 December; 204(12): 635-645. doi:10.1016/j.cancergen.2011.11.002.

The genetics of dyskeratosis congenita

Philip J Masona," and Monica Besslera,b

^aDivision of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania

Department Internal Medicine, University of Pennsylvania

- Most commonly due to Xlinked recessive mutations in DKC1 gene resulting in single amino-acid substitution of dyskerin
 - Less common autosomal dominant and recessive forms
- Our patient found to have telomere lengths <1st percentile, but no specific identifiable mutation
- Variable age of onset

Telomerase RNP

Key Points - Pathology

- DC is a clinical, radiological, pathological, and genetic diagnosis
- Cerebellar hypoplasia characteristic of HH
 - Hypoplasia of the granular layer without loss of Purkinje cells
 - Different from Ataxia-Telangiectasia and Myelocerebellar disorder
 - Additional NP findings
 - Reported cerebral calcifications, delayed myelination, hypoplasia of corpus callosum

References

- Savage SA, Dokal I, Armanios M, et al. Dyskeratosis congenita: the first NIH clinical research workshop. Pediatr Blood Cancer. 2009 Sep;53(3):520-3. doi: 10.1002/pbc.22061.
- Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genet.
 2011 Dec;204(12):635-45. doi: 10.1016/j.cancergen.2011.11.002.
- Pagon RA, Adam MP, Ardinger HH, et al., Dyskeratosis Congenita. Gene Reviews. Seattle (WA): University of Washington, Seattle; 1993-2017.
- Vulliamy TJ, Dokal I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie. 2008 Jan;90(1):122-30. Epub 2007 Jul 31.