2018 Diagnostic Slide Session Case #8

Angela N. Viaene, MacLean P. Nasrallah, and Zissimos Mourelatos Hospital of the University of Pennsylvania

Disclosures: none

Clinical History

- Healthy, 38-year-old female presented with headache, nausea and photophobia for 3 days. She subsequently developed visual loss and aura in both eyes.
- Past Medical History: None
- Past Surgical History: Ventral hernia repair
- No significant family history or social history

Imaging

- Large, predominantly cystic left parietal mass measuring 6.4 x 4.3 x 5.2 cm associated with irregular and nodular peripheral enhancement and areas of hemorrhage around its periphery.
- Mass effect including 7-8 mm rightward midline shift and partial effacement of the basal cisterns.

Differential Diagnosis?

Our Differential

- Pleomorphic xanthoastrocytoma
- Meningioma
- Pilocytic astrocytoma
- Ependymoma
- Subependymal giant cell tumor
- Melanocytic tumor
- Diffuse astrocytoma (lacking infiltration)
- Histiocytic lesion
- Nerve sheath tumor
- Metastasis

Immunohistochemistry

- Positive stains:
 - GFAP
 - S100: cytoplasmic
 - EMA: weak, patchy staining
 - No perinuclear dots or rings
 - Ki-67 < 1%

Negative stains:

- IDH1-R132H
- SSTR2A
- Neurofilaments
- Synaptophysin
- Keratins
- SOX10
- HMB45
- MITF2
- STAT6
- CD68 and CD163
- p53 (wildtype)

Integrated Diagnosis

- Brain, left parietal tumor, resection:
 - Integrated diagnosis: Pending
 - Histologic diagnosis: Low grade glioma
 - Histologic grade: Low grade (I-II)
 - Molecular information: IDH1-R132H negative (by immunohistochemistry), pending additional molecular/genetic studies

Molecular Findings

- Next generation sequencing on a panel of 152 genes (which includes among others: BRAF, p53, ATRX, EGFR, TSC1, TSC2, IDH1 and IDH2 genes) showed a normal sequencing study
- A Cancer Gene Fusion panel showed a FXR1 (NM_005087.3)-ALK (NM_004304.4) fusion
 - A BRAF fusion was not identified

Final Integrated Diagnosis

- Brain, left parietal tumor, resection:
 - Integrated diagnosis: Low grade glioma, IDH-wildtype, FXR1-ALK fusion
 - Histologic diagnosis: Low grade glioma
 - Histologic grade: Low grade
 - Molecular information: FXR1-ALK fusion, IDH-wildtype

ALK Rearrangements

- ALK (Anaplastic Lymphoma Kinase) encodes a receptor tyrosine kinase
- ALK fusions are seen in anaplastic large-cell lymphoma, inflammatory myofibroblastic tumors, thyroid carcinomas, and non-small cell lung cancers
- The ALK fusion protein results in constitutive activation of signaling pathways that increase cell proliferation of survival, leading to cancer formation
 - Exons 20–29 encode the tyrosine kinase domain of ALK
 - Most partners contain coiled-coil or leucine-zipper domains
 - Drive the oligomerization necessary for ligandindependent activation

Our Tumor

FXR1 exon 13 - ALK exon 20

Gliomas with ALK Rearrangements

	Olsen et al. 2015 #1	Olsen et al. 2015 #2	Aghajan et al. 2016
Age	8 months	9 months	3 months
Gender	M	F	F
Tumor Location and MRI	Right frontal	Right cerebral, leptomeningeal spread	Right cerebral
Histologic Diagnosis	Intermediate-grade glioma with features suggestive of ependymoma	Anaplastic ependymoma/ glioblastoma	Malignant glial tumor
Histologic Grade	II-III	III-IV	High Grade
Histology			
Fusion	KTN1-ALK	CCDC88A-ALK	PPP1CB-ALK
Treatment	Gross total resection, no chemotherapy/radiation	Resection and chemotherapy	Gross total resection, no chemotherapy/radiation
Follow-up	No sign of recurrence at 6.5 years	No disease progression 22 months after discontinuation of chemotherapy	Disease-free at 3 years with motor and neurocognitive delays

Histology often difficult to classify, has been proposed to potentially represent a new tumor entity

Therapeutic Implications

- Therapies for ALK gene alterations are predominantly associated with ALK gene fusions
- Crizotinib: selective adenosine triphosphate—competitive small-molecule oral inhibitor of ALK, c-MET, and ROS1 receptor tyrosine kinases and their oncogenic variants
 - Phase III studies showed crizotinib was superior to standard first-line chemotherapy in patients with previously untreated advanced ALK-rearranged NSCLC
 - FDA approved (2011) for metastatic NSCLC whose tumors are positive for ALK fusions
 - Crizotinib also effective in treating IMT and pediatric ALCL
 - Durable responses uncommon due to the development of resistance, leading to disease progression
 - Plasma concentration significantly higher than CSF suggesting poor blood-brain barrier penetration
- Most crizotinib-resistant tumors are sensitive to more potent, structurally distinct, secondgeneration ALK inhibitors
 - Ceritinib and alectinib are FDA approved for treatment of NSCLC
 - Initial studies have shown promising response in NSCLC CNS metastases

Patient Follow-up

- Gross total resection and no chemotherapy/radiation
- 1.5 years after surgery: Doing well, KPS-80, unable to drive because of right visual field cut which has been slowly improving
- MRI: Left parietal craniotomy for tumor resection without evidence of neoplastic progression. Stable foci of susceptibility and curvilinear enhancement about the resection cavity.

Take Home Points

- Common characteristics of CNS tumors with ALK fusions:
 - Pediatric and young adult patients (3 months 38 years)
 - Located in the cerebral hemispheres, well circumscribed, cystic
 - Gliomas with unique histology; may be low or high grade
 - All patients with no evidence of recurrence (follow-up: 1.5-6.5 years)
- ALK inhibitors (especially second-generation) are effective in treating tumors with ALK fusions, show promising CNS penetration and have a tolerable side-effect profile
- The precise role of ALK fusions in glioma tumorigenesis and the clinical and therapeutic significance remain to be defined

References

- Aghajan Y, Levy ML, Malicki DM, Crawford JR. Novel PPP1CB-ALK fusion protein in a high-grade glioma of infancy. BMJ Case Rep. 2016.
- Gantois I and Kooy RF. Targeting fragile X. Genome Biol. 2002; 3(5): reviews1014.1– reviews1014.5.
- Olsen TK, Panagopoulos I, Meling TR, Micci F, Gorunova L, Thorsen J, Due-Tønnessen B, Scheie D, Lund-Iversen M, Krossnes B, Saxhaug C, Heim S, Brandal P. Fusion genes with ALK as recurrent partner in ependymoma-like gliomas: a new brain tumor entity? *Neuro Oncol.* 2015 Oct;17(10):1365-73.
- Shaw AT, Hsu PP, Awad MM, Engelman JA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat Rev Cancer. 2013 Nov;13(11):772-87
- Holla VR, Elamin YY, Bailey AM, et al. ALK: a tyrosine kinase target for cancer therapy. Cold Spring Harbor Molecular Case Studies. 2017;3(1):a001115. doi:10.1101/mcs.a001115.