CASE 2019-2

Romain Cayrol M.D. Ph.D. and Hannes Vogel M.D.

Neuropathology

Stanford University

Disclosure

• I have no financial relationships to disclose

Clinical History

- 6-year-old girl with a history of regression of milestones beginning at one year of age
 - Late eruption of her primary teeth at about 3 1/2 years
 - Laryngeal cleft, exotropia, hearing loss and hirsutism
 - Progressive dystonic movement disorder leading to hypotonia
 - Progressive feeding difficulties, gastrostomy tube
 - Chronic lung disease from recurrent aspiration pneumonias leading to acute respiratory failure
- Laboratory study results included normal lactate, ceruloplasmin, copper; severe ketonuria with mild elevation of 3-OH-glutaric acid

Clinical History

- Genetic tests:
 - Normal karyotype, normal SNP microarray
 - Whole exome sequencing:
 - Carrier for biotinidase deficiency carrier
 - VUS in the TYMP gene (thymidine phosphorylase deficiency and MNGIE disease)
 - VUS in NDUFAF5 gene associated with mitochondrial complex 1 deficiency
 - Common cystic fibrosis mutation deltaF508 carrier

Imaging, Brain MRI

- Abnormal T2 hyperintensity in the basal ganglia, dorsal brainstem, and dentate nuclei with mild thinning of the corpus callosum
- Decreased white matter volumes of the cerebral hemispheres, and resultant mild ventriculomegaly

Autopsy

- Brain weight 965 g (expected 1250 g at 6 years of age); micrencephalic
- Bilateral and symmetrical frontal lobe atrophy and ventriculomegaly

Microscopy

Microscopy

Neuropathological diagnosis

Neuropathological Diagnosis

- 1. Micrencephalic for age (965 grams), with bilateral frontal cortical atrophy and ventriculomegaly
- 2. Striatal gliosis and neuronal loss, bilateral caudate nuclei and putamens consistent with "infantile bilateral striatal necrosis"

Infantile Bilateral Striatal Necrosis (IBSN)

- Familial/genetic, with/without a known genetic basis, and sporadic
- Onset may vary between birth and 1-3 years of age, and most often occurs during the course of febrile infectious disease
- Drowsiness or coma, abnormalities of muscle tone, and occasional seizures are the principle features of the acute stage
- Long-term survivors exhibit paralysis of the trunk and the extremities, and occasional involuntary movements

Infantile Bilateral Striatal Necrosis

- Clinico-pathologic associations:
 - Acute disseminated encephalomyelitis (ADEM)
 - Carbon monoxide intoxication
 - Infections
 - Juvenile Huntington chorea
 - Leigh disease
 - Methylmalonic aciduria, guanidinoacetate methyltransferase deficiency, glutaric acidemia l
 - Neurodegeneration with brain iron accumulation
 - Vascular: small vessel arteritis
 - Wilson's disease

- Genetic associations:
 - Gene defects related to mitochondrial dysfunction
 - Leigh disease
 - NDUFAF6 and NDUFV1
 - ATPase 6 gene
 - ADAR1
 - Nup62
 - Others

Undiagnosed Disease Network (UDN)

- For family planning purposes, postmortem repeat whole exome sequencing and reanalysis
- Found c.1771-7C>G (maternally inherited) in POLR3A (RNA polymerase III) classified as a pathogenic variant and c.1400C>T (p.S467L) (paternally inherited) classified as a VUS (SIFT and PolyPhen-2 predict damaging/probably damaging)
- No pathologic variants that matched her phenotype were found!

Gene	Variant(s)	Inheritance	Gene-Disease Association	Inheritance Pattern of Disease
POLR3A	c.1400C>T p.Ser467Leu c.1771-7C>G	Heterozygous- paternal Heterozygous- Maternal\$	Leukodystrophy, hypomyelinating, 7, with or without oligodontia and/or hypogonadotropic hypogonadism [MIM:607694]	Autosomal Recessive

POLR3A Hypomyelinating Leukodystrophy 7

- Autosomal recessive, hypomyelinating diseases, + cerebellar atrophy and hypoplasia of the corpus collosum
- At least 70 associated POLR3A gene mutations
- Varying combinations of four major findings:
 - Neurologic dysfunction: Predominated by motor, progressive cerebellar, and to a lesser extent dystonia, spasticity and cognitive dysfunctions
 - Abnormal dentition
 - Endocrine abnormalities: Short stature
 - Ocular abnormalities: Myopia

doi: 10.1093/hmg/ddw263

Advance Access Publication Date: 9 August 2016

Original Article

ORIGINAL ARTICLE

Transcriptome-wide effects of a POLR3A gene mutation in patients with an unusual phenotype of striatal involvement

Dimitar N. Azmanov^{1,2,†}, Stefan J. Siira^{1,†}, Teodora Chamova³, Ara Kaprelyan⁴, Velina Guergueltcheva³, Anne-Marie J. Shearwood¹, Ganqiang Liu⁵, Bharti Morar¹, Oliver Rackham¹, Michael Bynevelt⁶, Margarita Grudkova⁴, Zdravko Kamenov⁷, Vassil Svechtarov⁸, Ivailo Tournev^{3,9}, Luba Kalaydjieva¹ and Aleksandra Filipovska^{1,*}

POLR3A gene: c.1771-7C>G variant

Azmanov et al. 2016:

- Reported three patients (age 52, 23 and 27) with c.1771-6C>G mutation
- Clinical onset at 7-8 years with speech disturbances, dystonic movements, gait instability and dysphagia -> progressive ataxia, dystonia and dysarthria over time
- MRI showed striatal and red nucleus involvement
- Clinical manifestations corresponded with the localization of the radiological changes
- No pathology performed

Azmanov et al. 2016

Our patient

Conclusions

- This case expands the clinical phenotype associated with POLR3A mutations to include the Infantile Bilateral Striatal Necrosis syndrome
- POLR3A (RNA polymerase III) mutations may include diverse neurologic, endocrine, odontogenic and ocular abnormalities
- Repeat whole exome sequencing may be informative!

References

- Azmanov DN et al. Transcription wide effects of POLR3A in patients with an unusual phenotype of striatal involvement. Hum Mol Genet. 2016;25:4302-4314.
- Tonduti D et al. Neurological disorders associated with striatal lesions: classification and diagnostic approach. Curr Neurol Neurosci Rep (2016) 16: 54.

