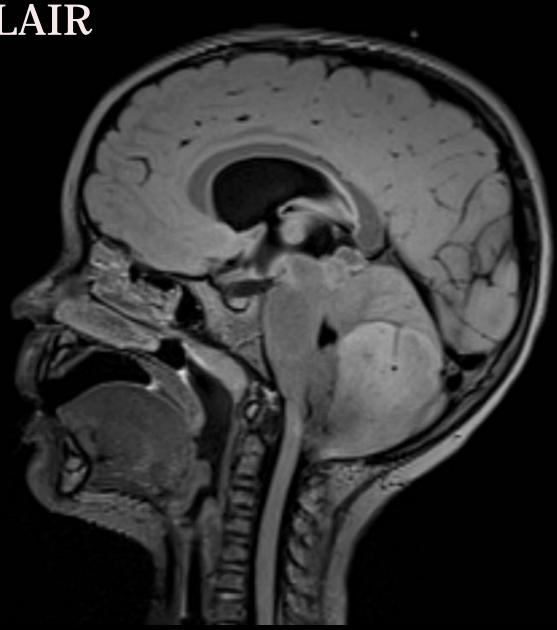
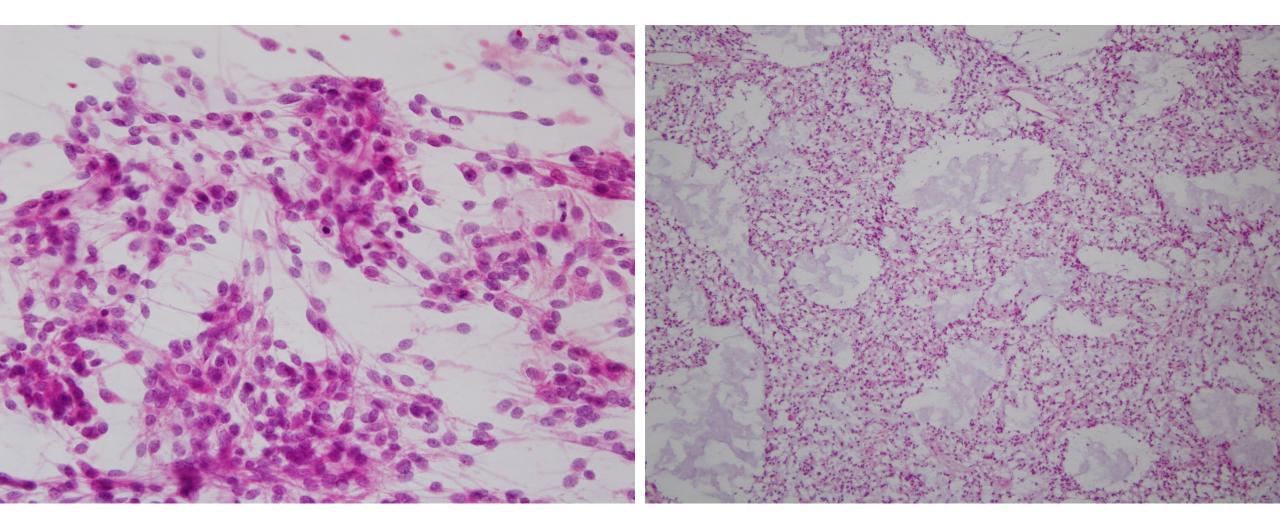
CASE 5

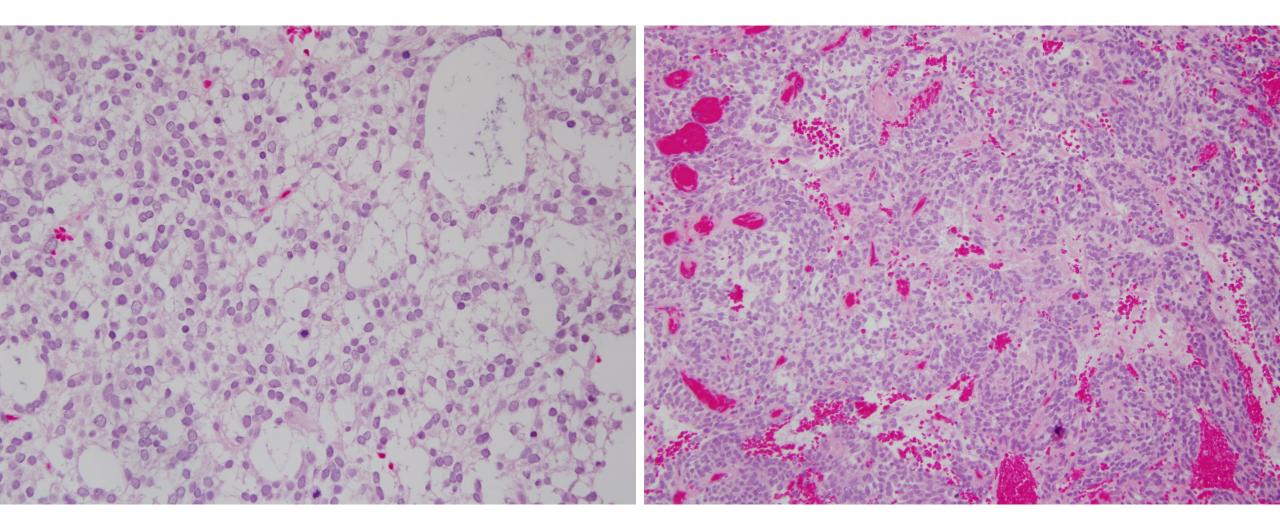
Nima Sharifai, M.D., Ph.D. Sonika Dahiya, M.D. Washington University in St. Louis


2021 Diagnostic Slide Session

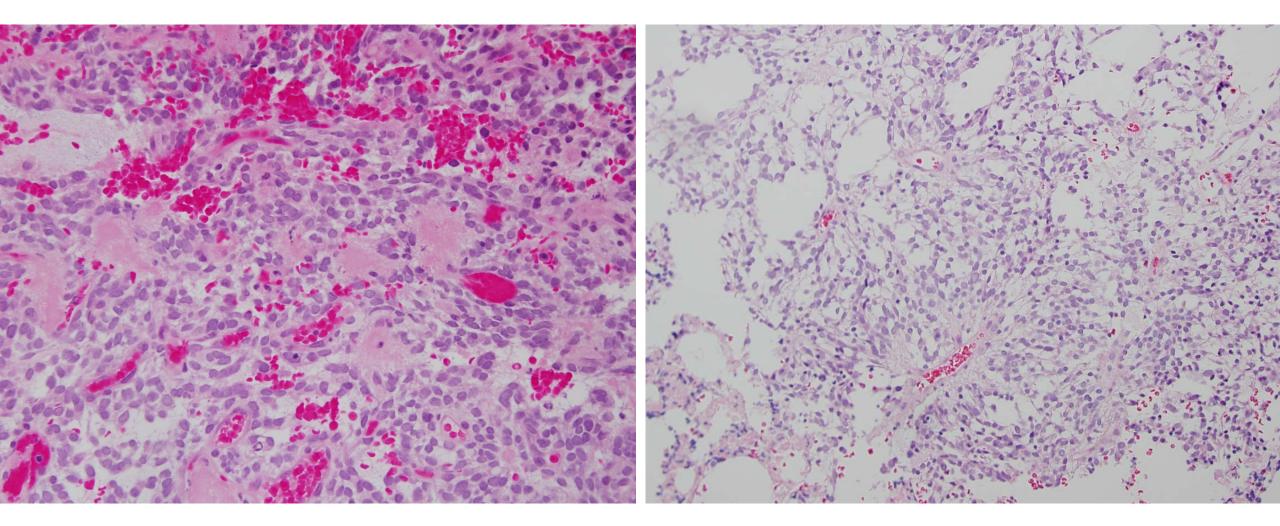
Washington University in St. Louis School of Medicine

History

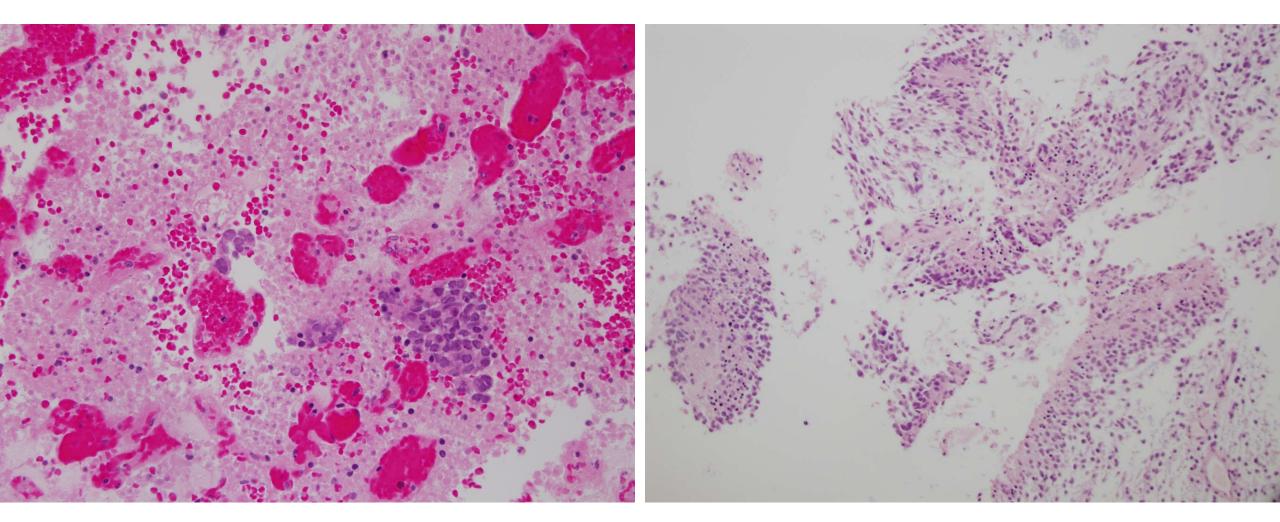

- 3-year-old girl presented with three weeks of headache, nausea, and vomiting
- Head CT performed at an outside hospital showed a hypoattenuating mass in the posterior fossa
- Patient transferred to St. Louis Children's Hospital, where Brain MRI w/ contrast was performed:


T1 (+C)

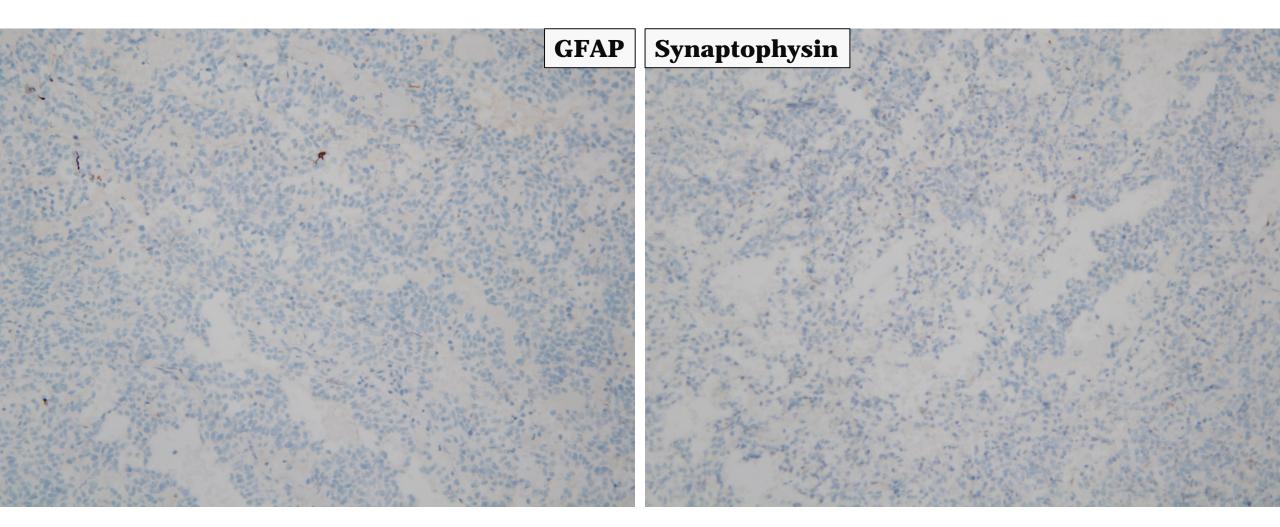
Intraoperative Consultation


Washington University School of Medicine in St. Louis

Permanent sections Tumor heterogeneity


Washington University School of Medicine in St. Louis

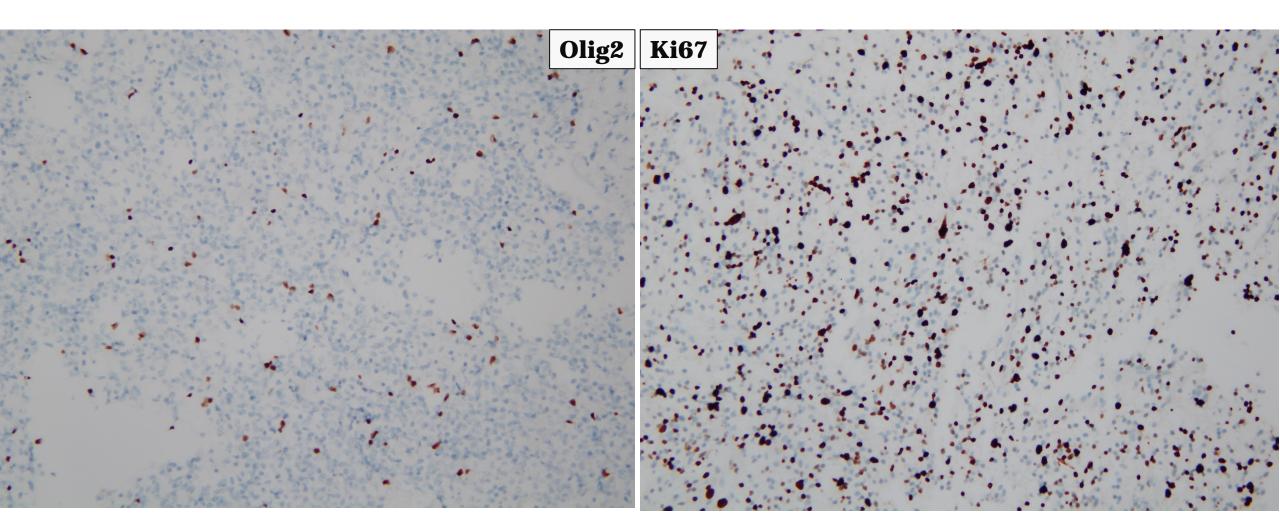
Permanent sections Pseudorosettes


Washington University School of Medicine in St. Louis

Permanent sections Necrosis

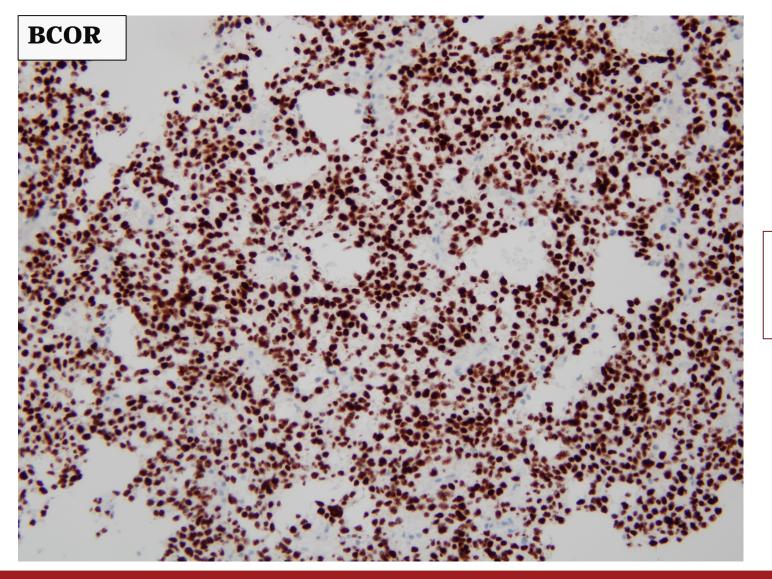
Washington University School of Medicine in St. Louis

Immunohistochemistry


Washington University School of Medicine in St. Louis

Immunohistochemistry

- <u>Positive stains</u>
 - Vimentin
 - CD99
 - D2-40 (membranous pattern)
 - FLI-1
 - S-100 (occasional)
 - LIN28A (patchy)
 - GLUT-1 (focal)
 - Olig2 (patchy)
 - Ki67 (~40%)


- Negative stains
 - GFAP
 - Synaptophysin
 - Neurofilament
 - NeuN
 - WT-1
 - SMA
 - Desmin
 - CD34
 - EMA
 - Inhibin
 - HMB-45
 - BRAF V600E
- <u>Negative FISH</u>
 - EWSR1 and C19MC

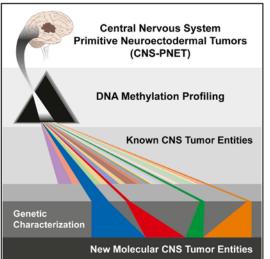
Immunohistochemistry

Washington University School of Medicine in St. Louis

CNS Tumor with BCOR-ITD

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.


BCOR BCOR-ITD (V1707_E1708ins30)

Washington University School of Medicine in St. Louis

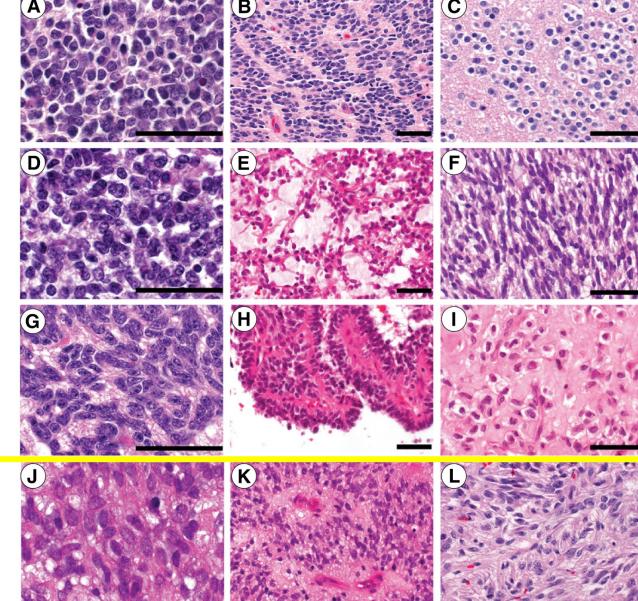
Cell

New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs

Graphical Abstract

Authors

Dominik Sturm, Brent A. Orr, Umut H. Toprak, ..., David W. Ellison, Andrey Korshunov, Marcel Kool


Correspondence m.kool@dkfz.de

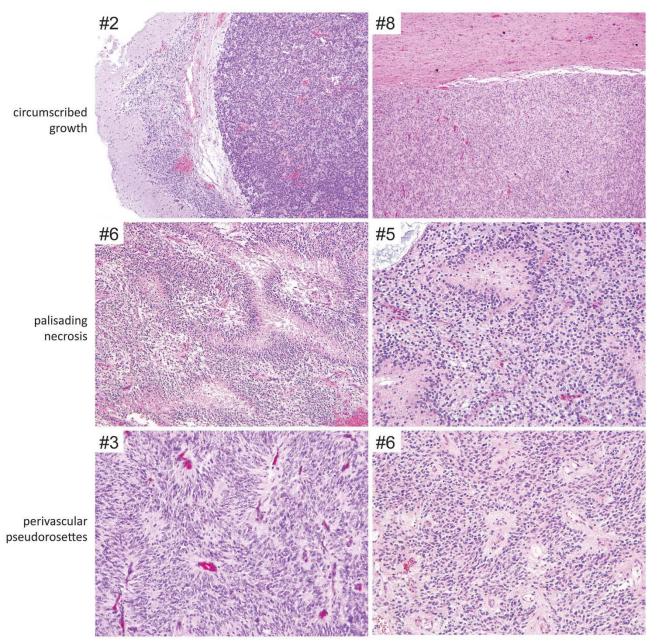
In Brief

Highly malignant primitive neuroectodermal tumors of the CNS (CNS-PNETs) have been challenging to diagnose and distinguish from other kinds of brain tumors, but molecular profiling now reveals that these cancers can be readily classified into some known tumor types and four new entities with distinct histopathological and clinical features, paving the way for meaningful clinical trials.

CNS NB-FOXR2

CNS HGNET-*BCOR*

Washington University School of Medicine in St. Louis


RESEARCH ARTICLE

High-grade neuroepithelial tumor with *BCOR* exon 15 internal tandem duplication—a comprehensive clinical, radiographic, pathologic, and genomic analysis

Sean P. Ferris¹; Jose Velazquez Vega²; Mariam Aboian³; Julieann C. Lee¹; Jessica Van Ziffle^{1,4}; Courtney Onodera^{1,4}; James P. Grenert^{1,4}; Tara Saunders¹; Yunn-Yi Chen¹; Anu Banerjee⁵; Cassie N. Kline^{5,6}; Nalin Gupta⁷; Corey Raffel⁷; David Samuel⁸; Irune Ruiz-Diaz⁹; Shino Magaki¹⁰; Dianne Wilson¹¹; Janna Neltner¹¹; Zahra Al-Hajri¹²; Joanna J. Phillips^{1,7}; Melike Pekmezci¹; Andrew W. Bollen¹; Tarik Tihan¹; Matthew Schniederjan²; Soonmee Cha³; Arie Perry^{1,7}; David A. Solomon^{1,4}, D

Washington University School of Medicine in St. Louis

Table 3. Immunohistochemical features of the 10 CNS high-grade neuroepithelial tumors with BCOR exon 15 internal tandem duplication.

Tumor ID	GFAP	OLIG2	NeuN	Synaptophysin	Neurofilament	EMA	p53	Ki-67	BCOR
SF-BCOR-1	Negative	-	-	Negative	Positive (10%)	-	5%	20%	Strongly positive
SF-BCOR-2	Negative	Positive (20%)	Positive (10%)	Negative	Positive (10%)	Granular cytoplasmic positivity	30%	-	-
SF-BCOR-3	Negative	Positive (20%)	Negative	Negative	Positive (5%)	Granular cytoplasmic positivity	-	40%	Strongly positive
SF-BCOR-4	Negative	Positive (10%)	Positive	Negative	-	Negative	15%	20%	-
SF-BCOR-5	Focally positive	-	Positive	Negative	Negative	Negative	10%	15%	Strongly positive
SF-BCOR-6	Negative	-	Positive (40%)	Negative	Positive (1%)	Negative	10%	60%	Strongly positive
SF-BCOR-7	Negative	Positive (30%)	Positive (80%)	-	Negative	Negative	-	-	Strongly positive
SF-BCOR-8	-	Positive (40%)	Positive (70%)	Negative	Negative	-	-	-	Strongly positive
SF-BCOR-9	Negative	Negative	Positive (20%)	Negative	Positive (10%)	Granular cytoplasmic positivity	-	-	Strongly positive
SF-BCOR-10 (LG)	Negative	Positive (20%)	Positive (80%)	Negative	Negative	Granular cytoplasmic positivity	0%	5%	Strongly positive
SF-BCOR-10 (HG)	Focally positive	Negative	Positive (20%)	Negative	Positive (1%)	Granular cytoplasmic positivity	90%	60%	Strongly positive

HG = high-grade/anaplastic component; LG = low-grade appearing component.

Washington University School of Medicine in St. Louis

Other CNS tumors with BCOR protein expression

- Astroblastoma-like neuroepithelial tumor with MN1 rearrangement²
- Pediatric gliomas with EP300-BCOR fusions³
- High-grade neuroepithelial tumor, NOS⁴

cIMPACT-NOW update 6

Table 1. Summary of cIMPACT-Utrecht recommendations.
A Newly recognized type, subtype, diagnostic criteria, or family of tumors
Specific genetic features sufficient for diagnosis of "glioblastoma, IDH-wildtype"
Astrocytomas, IDH-mutant, grades 2 through 4
Pediatric-type glial/glioneuronal tumors (see Table 3)
Diffuse glioma, H3.3 G34-mutant
CNS neuroblastoma, *FOXR2*-activated
CNS tumor with *BCOR* internal tandem duplication *CIC* sarcoma (aligned with the WHO classification of tumors of

soft tissue and bone)

Washington University School of Medicine in St. Louis

LETTER TO THE EDITOR

Open Access

The *EP300:BCOR* fusion extends the genetic alteration spectrum defining the new tumoral entity of "CNS tumors with *BCOR* internal tandem duplication"

Table 1 Comparison of clinical, histopathological and molecular data according to methylation classes and diagnoses

	HGNET-BCOR ITD ($n = 29$)	HGNET-BCOR EP300:BCOR/BCORL1 fusions (n = 3)	GLIOMAS EP300:BCOR fusion (n = 4)
Location	Infratentorial (52%)	Supratentorial (100%)	Supratentorial (100%)
Age	Median age $=$ 3.5 YO (0;22)	Median age = $27 \text{YO} (13;72)$	Median age = 12 YO (10;18)
Sex	Male (54%)	Male (100%)	Male (66%)
Radiology	Large, well-circumscribed, solid with meningeal attachment; T1 hypoin- tense, T2 hyperintense, low ADC, heterogeneous enhancement	Large, well-circumscribed, solid with meningeal attachment; T1 hypoin- tense, T2 hyperintense, low ADC, heterogeneous enhancement	Limited data: no meningeal attachment, not well circumscribed, T2 hyperin- tense, mild enhancement
Histopathology	High-grade solid tumor with perivascu- lar pseudorosettes and microcysts	High-grade solid tumor with perivascu- lar pseudorosettes and microcysts	Infiltrative tumor Variable grade (low in 2 cases, high in 2 cases)
Immunohistochemistry	GFAP-/Olig2+/EMA-/Neuronal mark- ers+/BCOR+	GFAP-/Olig2+/EMA-/Neuronal mark- ers+/BCOR-	GFAP+/Olig2+/Neuronal markers-/ BCOR+
DNA-methylation class	HGNET-BCOR	HGNET-BCOR	LGG-MYB/MYBL1
Outcome	65% recurrences Median PFS = 12.5 months 30% dead at the end of follow-up Median OS = 26 months	0% recurrences 0% dead at the end of follow-up Median OS = 27 months	100% recurrences Median PFS = 4.0 months 0% dead at the end of follow-up Median OS = 7 months

ADC apparent diffusion coefficient, ITD internal tandem duplication, OS overall survival, PFS progression-free survival, YO years-old

Washington University School of Medicine in St. Louis

References

- 1. Sturm D, Orr BA, Toprak UH, Hovestadt V, Jones DTW, Capper D, et al. New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs. Cell. 2016;164(5):1060–72.
- Ferris SP, Velazquez Vega J, Aboian M, Lee JC, Van Ziffle J, Onodera C, et al. High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication—a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol. 2020; 30(1):46–62.
- 3. Torre M, Meredith DM, Dubuc A, Solomon DA, Perry A, Vasudevaraja V, et al. Recurrent EP300-BCOR fusions in pediatric gliomas with distinct clinicopathologic features. J Neuropathol Exp Neurol. 2019;78(4):305–14.
- 4. Rao S, Mitra S, Sugur H, Vazhayil V, Rao BRM, Annayappa SK, et al. Central nervous system high grade neuroepithelial tumor with BCOR immunopositivity: Is there a molecular heterogeneity? Brain Tumor Pathol. 2021 Jan; 38(1): 41–9.
- 5. Louis DN, Wesseling P, Aldape K, Brat DJ, Capper D, Cree IA, et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol. 2020; 1–13.
- Tauziède-Espariat A, Pierron G, Siegfried A, Guillemot D, Uro-Coste E, Nicaise Y, et al. The EP300: BCOR fusion extends the genetic alteration spectrum defining the new tumoral entity of "CNS tumors with BCOR internal tandem duplication." Acta Neuropathol Commun. 2020;8(1):4–9.

Washington University School of Medicine in St. Louis